Lithium is a chemical element with symbol Li and atomic number 3. Classified as an alkali metal, lithium is a solid at room temperature.
Lithium and its compounds have several industrial applications, including heat-resistant glass and ceramics, lithium grease lubricants, flux additives for iron, steel and aluminium production, lithium batteries, and lithium-ion batteries. These uses consume more than three quarters of lithium production.
Lithium is present in biological systems in trace amounts; its functions are uncertain. Lithium salts have proven to be useful as a mood-stabilizing drug in the treatment of bipolar disorder in humans.
It does not occur freely in nature; combined, it is found in small units in nearly all igneous rocks and in many mineral springs. Lepidolite, spodumene, petalite, and amblygonite are the more important minerals containing it.
Lithium is presently being recovered from brines of Searles Lake, in California, and from those in Nevada. Large deposits of quadramene are found in North Carolina. The metal is produced electrolytically from the fused chloride. Lithium is silvery in appearance, much like Na, K, and other members of the alkali metal series. It reacts with water, but not as vigorously as sodium. Lithium imparts a beautiful crimson color to a flame, but when the metal burns strongly, the flame is a dazzling white.
Hydrogen is a chemical element with symbol H and atomic number 1. Classified as a nonmetal, hydrogen is a gas at room temperature.
With a standard atomic weight of 1.008, hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass.
Hydrogen is estimated to make up more than 90% of all the atoms three quarters of the mass of the universe! This element is found in the stars, and plays an important part in powering the universe through both the proton-proton reaction and carbon-nitrogen cycle. Stellar hydrogen fusion processes release massive amounts of energy by combining hydrogens to form helium.
Hydrogen is the primary component of Jupiter and the other gas giant planets. At some depth in the planet’s interior the pressure is so great that solid molecular hydrogen is converted to solid metallic hydrogen.
In 1973, a group of Russian experimenters may have produced metallic hydrogen at a pressure of 2.8 Mbar. At the transition the density changed from 1.08 to 1.3 g/cm3. Earlier, in 1972, at Livermore, California, a group also reported on a similar experiment in which they observed a pressure-volume point centered at 2 Mbar. Predictions say that metallic hydrogen may be metastable; others have predicted it would be a superconductor at room temperature.